- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bleris, Leonidas (3)
-
Kang, Taek (3)
-
Makris, Yiorgos (2)
-
Bidmeshki, Mohammad Mahdi (1)
-
Camposagrado, Jocelyn_G (1)
-
Chen, Jie (1)
-
Doctor, Yesh (1)
-
Li, Yi (1)
-
Nowak, Chance M. (1)
-
Pertsemlidis, Alexander (1)
-
Zhou, Zikun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhou, Zikun; Kang, Taek; Chen, Jie; Doctor, Yesh; Camposagrado, Jocelyn_G; Makris, Yiorgos; Pertsemlidis, Alexander; Bleris, Leonidas (, Advanced Science)Abstract A Physical Unclonable Function (PUF) is a security primitive that exploits inherent variations in manufacturing protocols to generate unique, random‐like identifiers. These identifiers are used for authentication and encryption purposes in hardware security applications in the semiconductor industry. Inspired by the success of silicon PUFs, herein it is leverage Terminal deoxynucleotidyl Transferase (TdT), a template‐independent polymerase belonging to the X‐family of DNA polymerases, to augment the intrinsic entropy generated during DNA lesion repair and rapidly produce genetic PUFs that satisfy the following properties: robustness (i.e., they repeatedly produce the same output), uniqueness (i.e., they do not coincide with any other identically produced PUF), and unclonability (i.e., they are virtually impossible to replicate). Furthermore, a post‐sequencing feature selection methodology based on logistic regression to facilitate PUF classification is developed. This experimental and computational pipeline drastically reduces production time and cost compared to conventional genetic barcoding without compromising the stringent PUF criteria of uniqueness and unclonability. This results provide novel insights into the function of TdT and represent a major step toward utilization of PUFs as a biosecurity primitive for cell line authentication and provenance attestation.more » « less
An official website of the United States government
